N-Channel FET

TIXS36

30V / 10mA / 1,5W

DATASHEET

OEM - Texas Instruments

Source: Texas Instruments Databook 1968/69

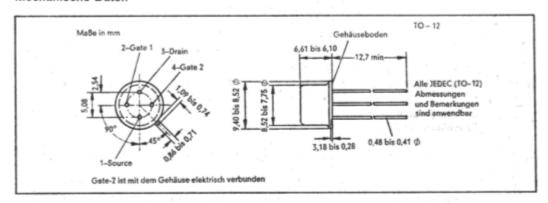
Datasheet Rev. 1.3 – 03/19 – data without warranty / liability

N-Kanal-Epitaxial-Silizium-Planar-Feldeffekt-Transistor

TIXS35, TIXS36

Tetroden-Feldeffekt-Transistoren

Für VHF-Verstärker, Mischer, Autodyn-Konverter und Anwendungen mit automatischer Regelverstärkung


Geringe C_{12s}: max 1,8 pF

Hoher Leitwert: min 10 000 µS

Min. Oszillator-Beeinflussung bei Mischer-Anwendungen

Großsignal-Fähigkeiten

Mechanische Daten

Absolute Grenzwerte

Drain-Gate-1-Spannung	30 V
Drain-Gate-2-Spannung	30 V
Drain-Source-Spannung	±30 V
Gate-1-Source-Spannung in Sperrichtung	-30 V
Gate-2-Source-Spannung in Sperrichtung	-30 V
Gate-1-Strom in Durchlaßrichtung	10 mA
Gate-2-Strom in Durchlaßrichtung	10 mA
Dauer-Verlustleistung bei (oder darunter) $T_{U} = 25$ °C (Bem. 1)	0,5 W
Dauer-Verlustleistung bei (oder darunter) $T_{\rm G}=25^{\circ}{\rm C}$ (Bem. 2)	1,5 W
Lagerungs-Temperaturbereich	65 °C bis +200 °C
Temperatur der Anschlüsse 1,6 mm vom Gehäuse (10 s Dauer)	300 °C

Bemerkungen:

- 1. Lineare Abnahme bis $T_U = 175$ °C mit 3,33 mW/°C.
- 2. Lineare Abnahme bis T_G = 175 °C mit 10 mW/°C.

Elektrische Kennwerte bei $T_{U}=25\,^{\circ}C$ (wenn nicht anders angegeben)

Parameter		Prüfbedingungen	Bem.	TIXS3 min	5 max	TIXS3 min	6 max	Ein- heit
U _{(BR)G1} G	Gate 1 — Gate 2 Durchbruchspannung	$I_{G_1} = 10 \mu A,$ $I_D = 0,$ $I_S = 0$		1		3		٧
U(BR)G1 G	Gate 2 — Gate 1 Durchbruchspannung	$I_{G1} = -10 \mu A,$ $I_{D} = 0,$ $I_{S} = 0$		1		3		٧
U _{(BR)GSS}	Gate-Source Durchbruchspannung	$l_G = -10 \mu A$, $U_{DS} = 0$	4	-30		-30		٧
IGSS	Gate-Sperrstrom	$U_{GS} = -15 \text{ V},$ $U_{DS} = 0$	4		-10		—10	nΑ
		$U_{GS} = -15 \text{ V},$ $U_{DS} = 0,$ $T_{U} = 150 ^{\circ}\text{C}$	4		10		—10	μΑ
DSS	Drainstrom	$U_{DS} = 10 \text{ V},$ $U_{GS} = 0$	3, 4	10	50	40	200	mΑ
Ugs	Pinch-off-Spannung	$U_{DS} = 10 \text{ V},$ $I_{D} = 1 \mu A$	4	—1	— 5	-3	—10	٧
rds(on)	Dyn. Drain-Source- Durchlaßwiderstand	$U_{DS} = 0$, $U_{GS} = 0$, f = 1 kHz	4				50	Ω
Y228	Ausgangsleitwert	$U_{DS} = 10 \text{ V, } I_{D} = 1 \text{ mA (TIXS35), } I_{D} = 40 \text{ mA (TIXS36),}$ $U_{G1S} = 0$ $f = 1 \text{ kHz}$ $= 5$ $= 200$ $= 400 \text{ mA (TIXS36),}$						μS
Y21s 1	Kurzschlußleitwert	f = 1 kHz	5, 6	10 000		10 000		μS
y21s 2	Kurzschlußleitwert	f = 1 kHz	5, 7	5 000	10 000	5 000	10 000	μS
C ₁₁₈₁	Eingangskapazität	f = 1 MHz	5, 6		12		12	pF
C _{11s2}	Eingangskapazität	f = 1 MHz	5, 7		35		35	pF
-C _{12s1}	Rückwirkungskapazität	f = 1 MHz	5, 6		1,8		1,8	pF
$-C_{12s2}$	Rückwirkungskapazität	f = 1 MHz	5, 7		5		5	pF
921s1	Realteil der Vorwärtssteilheit	f = 100 MHz	5, 6	9 000		9 000		μS
921s2	Realteil der Vorwärtssteilheit	f = 100 MHz	5, 7	4 500		4 500		μS

Bemerkungen:

- 3. Impulsmessung: 100 ms, Tastverhältnis≤ 10%.
- 4. Gate 1 verbunden mit Gate 2. Das Symbol IG bezieht sich auf den gesamten Gate-Strom.
- 5. Gate 2 ist vorgespannt, um die konstanten Strombedingungen zu erhalten.
- 6. Das Signal liegt am Gate 1; Gate 2 ist wechselstrommäßig mit Source kurzgeschlossen.
- 7. Das Signal liegt an Gate 2; Gate 1 ist direkt mit Source verbunden.